
Error Messages Are Classifiers

A Process to Design and Evaluate Error Messages

John Wrenn
Computer Science
Brown University

USA
jswrenn@cs.brown.edu

Shriram Krishnamurthi
Computer Science
Brown University

USA
sk@cs.brown.edu

Abstract

This paper presents a lightweight process to guide error re-
port authoring. We take the perspective that error reports
are really classifiers of program information. They should
therefore be subjected to the same measures as other classi-
fiers (e.g., precision and recall). We formalize this perspective
as a process for assessing error reports, describe our applica-
tion of this process to an actual programming language, and
present a preliminary study on the utility of the resulting
error reports.

CCS Concepts • Software and its engineering → Gen-
eral programming languages; Language features; Compilers;

Keywords error messages, highlighting, classifiers, preci-
sion and recall, Pyret
ACM Reference Format:

John Wrenn and Shriram Krishnamurthi. 2017. Error Messages
Are Classifiers: A Process to Design and Evaluate Error Messages.
In Proceedings of 2017 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!’17). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3133850.3133862

1 Introduction

Error messages are a crucial communication channel be-
tween the computer and programmer. They generally indi-
cate that something has gone wrong, what has gone wrong,
where, and try to offer context or other information to help
the programmer correct the error. Over the decades, error
messages have become progressively more elaborate, from
error codes that needed to be looked up in manuals to having
multi-colored, hypertext, expanding, and other elements.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133862

Error messages are particularly important to beginning
programmers. First, they may already be intimidated by the
act of learning programming, so these messages must not
further turn them off. Second, errors are one of their first
experiences with the computer as a harsh taskmaster: prior
to that, their linguistic communication is handled by humans,
who can often fill in missing context or (mis)interpretation.
Third, they have a more limited vocabulary and knowledge
than the experienced programmer, making the act of reading
messages that much harder. Finally, there are often moments
when beginners realize they not only have a mistake in their
program, but may have misunderstood the functioning of
the language itself. For all these reasons, error messages have
been a focus in computer science education [10, 15, 17–19].

Because error messages are a human-computer interaction
element, they should be subject to user studies and other
forms of evaluation. Indeed, many researchers have per-
formed extensive studies of how programmers (particularly
students) react to different forms of messages [10, 15, 19, 20].
These studies have shown how students struggle with the
vocabulary of errors [18], how the affect of actors involved
in presenting the errors matters [10, 15, 20], and so on. One
particularly significant finding is that, when an error mes-
sage points to a fragment of code (as most do), students tend
to adopt an “edit here” mentality [18]. Unfortunately, they
behave this way even when the error message text might
suggest otherwise, and in fact the highlighted portion is the
only part of the program that is definitely correct, thereby
making their program significantly worse with every edit!

Such studies show the importance of performing rigorous
user studies on errors after they have been deployed. How-
ever, this creates a chicken-and-egg problem. To do these
studies, one usually needs a sizable base of users who have
had some experience with the language—but getting to such
a community of programmers often depends on the language
being usable in the first place, including in its presentation
of errors. Therefore, waiting for a study gives a language
creator no guidance while they are building their implemen-
tation. Furthermore, many users may have had to endure
a significantly sub-standard experience until a study was
executed and its findings implemented. Finally, studies are
expensive, difficult to administer well, and time-consuming,
so it can be hard to get feedback in a rapid prototyping cycle.

https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1145/3133850.3133862

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

Fortunately, there are also other traditions in human-
computer interaction for evaluating interfaces, and in many
areas, researchers have created lightweight evaluation rubrics
that a design team can itself implement and apply during the
development or upgrade process. A good illustrative exam-
ple is the work on “cognitive dimensions of notations” [4],
which offers over a dozen dimensions along which a notation
can be evaluated. Other good examples include “cognitive
walkthroughs” [21], the “system usability scale” [5], and so
on, which range in weight of effort and in how early in the
process they can be administered. These techniques are not
intended to replace a thorough user study, but, rather, to
complement it and in some cases offer tools that can be used
during the design and implementation phases, resulting in
the deployment of better artifacts.

Our goal in this paper is to provide a similar process that
can be used by error report designers during the design and
implementation phases. We present this in multiple stages.
First we present our perspective of error reports as classifiers
of information (Section 2). Next, we discuss the types of infor-
mation that comprise an error, which must somehow be pre-
sented to the user (Section 3). We formalize our perspective
as a process for assessing error reports (Section 4), demon-
strate its application on a report for a simple error (Sections 5
and 6), and adapt it to the assessment of a highlighting-based
program selection mechanism (Section 7).
While the content of this paper is applicable to any pro-

gramming environment that reports errors, we concreteize
these issues in the context of an actual language: Pyret [6].
We conclude with a discussion of how we applied this frame-
work to overhaul of Pyret’s error reports, and a preliminary
study to confirm that the consequences of following this
process did not negatively affect users (Section 9).

2 Shifting From Text to Classification

Some past research has presented expansive, itemized pre-
scriptions for how compilers should communicate errors
to users: for instance, Horning [13], Shneiderman [23], and
Traver [25]. These efforts to identify principles that charac-
terize good reports occupy the same space of broad interface
design principles for error reports as frameworks like cogni-
tive dimensions do for notation.
However, although Horning and Traver argue that error

messages should first direct the programmer accurately to
“the location” where the error occurred, the bulk of all three
authors’ arguments is that information should be swaddled
in a “good” explanation, for various definitions of that term.
Indeed, many error messages projects follow a similar (some-
times unwritten) focus on the language of the error message:
e.g., Shneiderman writes [23],

Writing good messages, like writing poems, es-
says, or advertisements, requires experience, prac-
tice, and a sensitivity to how the reader will react.

and that focus persists into modern times [15, 18].

However, studies show that students often do not under-
stand the vocabulary of messages [18], and anyway, obey an
“edit here” mentality based on what code is highlighted [18].
Therefore, an equally important component of error reports
is what code they highlight. The act of selecting code im-
plicitly draws the reader’s attention to those fragments and
takes attention away from the fragments not highlighted.
In short, an error message report is a classifier of code: it
effectively classifies code as “look here to start fixing the
error” and “don’t look there to start fixing the error”.
What properties might we want of such a classifier? Ide-

ally, we would expect it to satisfy both completeness and
soundness: it should highlight all relevant code, and high-
light nothing but relevant code. If it fails to highlight all
relevant code, it might not call attention to the place where
the problem lies (as previous studies have shown). Similarly,
if it highlights code not relevant to the error, it might cause
a blameless fragment to be unnecessarily altered. While this
paper gives special consideration to selecting program frag-
ments, we apply this principle broadly: an error report should
present relevant information and should not present irrele-
vant information.

Soundness and completeness are, however, too binary. A
better measure would be their numeric counterparts, preci-
sion and recall, which are anyway standard measures applied
to classification algorithms. Furthermore, real error message
authoring involves tradeoffs, and authors sometimes sacri-
fice one property for the other based on their judgment (and,
presumably, subject to subsequent studies). Therefore, the
value of these measures is as a guideline to authors, in par-
ticular helping quantify differences between choices. This
approach complements, but does not replace, other light-
weight evaluation frameworks. An error report author must
decide what information to present and how to present it.
The cognitive dimensions of notations, for instance, address
the latter; our work addresses the former.

3 A Model of Error Information

In concluding that an error has occurred, the language con-
siders at least three information sources, with interesting
interactions. Consider the case of run-time errors: there is the
source program, there are some run-time values computed
by terms in that program, and there are constraints—coming
from the semantics—that those values violated, resulting in
the error. Pictorially,

Program

Values Constraints

Produces Generates

Violate

While the values arise directly from terms in the program, the
constraints may cross-cut the values (e.g., an array’s size and
an index are each fine on their own, but their out-of-bounds
juxtaposition results in a violation).

Error Messages Are Classifiers Onward!’17, October 25–27, 2017, Vancouver, Canada

The error report’s job is to present all this information to
the user in a way that is accurate, useful, and (hopefully) not
overwhelming. Of these three, however, neither the evaluator
nor the semantics can be changed, so values and constraints
are effectively fixed; the programmer can only alter the pro-
gram. This is why selecting the right program fragments is
so important; however, the report must also relate these frag-
ments to values and constraints to guide the programmer’s
edits.
Though this paper focuses on run-time errors, the above

model applies more generally. For instance, type-checking er-
rors also fall into this framework, with values being replaced
by types. This also applies to static well-formedness checks
(e.g., no duplicate binding of identifiers), where values are
replaced by program fragments, and a program “contains”
these fragments rather than “producing” them.

4 An Error Assessment Process

Given this information model, we propose a process for
designing and evaluating error reports. This has four steps.
First, the author of the error report represents the available
information. Second, they must review these representations
and classify each information element as relevant (or not) to
repairing the error. Third, given this classification, they must
select the information that is relevant and present it to the
user by composing an error report. Finally, they evaluate the
soundness and completeness of the selection with respect to
the classification via the measures of precision and recall.
For instance, because errors should be reported in terms

of the programs that caused them, we need a representation
of these programs. At error authoring time we do not have a
concrete program available, but we do have an understand-
ing of the situation in which the error occurs. We represent
this using a partial and parametric AST (p-ast): it is partial
because it refers to just a fragment of the program, and it
is parametric because it has holes that need to be filled in
by the specific program instance. We see examples of this
later in the paper (Sections 5 and 7). The p-ast represents
the syntactic information available during error authoring.
The author still has to classify which parts of the p-ast are
relevant and which are not. Given the classification, we se-
lect the relevant fragments of the program by composing an
error report. There are many technologies for selection. As
discussed in Sections 5 to 7, some of them have better fidelity
than others in presenting the classification, and must hence
themselves be subject to precision and recall evaluation.
How to determine relevance is outside the scope of this

paper as it is highly dependent on context. While a perfect
heuristic would identify as ‘relevant’ exactly the set of infor-
mation that is actually used to correct the error, predicting
this is often infeasible: any given type of error can usually
be corrected in several ways and the strategy that is ulti-
mately employed will depend on the user’s intent. If the

designer lacks a good heuristic for relevance—as may be the
case when there is limited structured information available
(e.g., parse errors) or in complex algorithmic systems with
non-local effects (e.g., full-program type inferencing)—then
our process will be of limited use.

5 A Simple Application of the Process

To illustrate how to use the process, we begin with an ex-
tremely simple example. Consider a language with an over-
loaded binary + operator. Suppose in this language either
both operands must be numbers, or if the left operand is a
string, the right can be any value. These two constraints thus
restrict the set of valid expressions. When the constraints are
not satisfied, an error is reported. A program that induces
this error and a concrete error report for that program are
shown in Figure 1.
We represent the syntactic features that characterize pro-

grams which cause this error with a p-ast:

Plus

Left Right

Using the information model presented in Section 3, we
classify the available information as relevant or irrelevant
and enumerate it. We identify relevant terms:

1. Plus
2. Left
3. Right

...constraints:
4. Add
5. Concat

...values:
6. vLeft (the value of the left operand)
7. vRight (the value of the right operand)

...relationships between terms and constraints:
8. Plus imposes Add
9. Plus imposes Concat

...relationships between constraints and values:
10. Add constrains vLeft
11. Add constrains vRight
12. Concat constrains vLeft

...and relationships between terms and values:
13. Left produces vLeft
14. Right produces vRight

We then compare the information elements selected in Fig-
ure 1 against our enumeration of relevant information. This
report does not convey any irrelevant information, therefore
it is sound (a precision of 1). However, this report includes
only some of the information that we identified as relevant:
for instance, it omits all information relating to constraints
(information elements 4, 5, 8, 9, 10, 11, and 12 are missing).
In this context, precision is the fraction of information ap-
pearing in the report that also appears in our list of relevant

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

1 a = 5

2 b = 10

3 c = "cat"

4 d = "hello"

5 print(a + b +

6 c + d)

The binary plus expression failed on the values:
• 15
• “cat”

Figure 1. Running this program induces an error because a number is added to a string. The error report localizes the problem
in the code with a (red) gutter-marker on line 5.

elements, and recall is the fraction of relevant elements that
are conveyed by the report. Recall thus quantifies the incom-
pleteness of this report:

Recall =
|relevant ∩ selected|

|relevant|
=

7
14

This simple example merely illustrates the process at work.
In Section 7 we will see more sophisticated examples involv-
ing trade-offs.

6 Location Locution

We have made two insidious assumptions in our analysis of
this report. First, we assumed that the readers of this report
will be able to identify the relationships between the content
of the report and syntactic terms of the program as well as we
did. For instance, we assume that the readers of this report
will infer that the value 15 corresponds to the left operand
and not the right operand. We could precede each value with
a phrase like “the left operand was”, but that would assume
that the reader could identify those referents in the source
code—a tenuous assumption if the reader is, say, a novice
programmer and unfamiliar with the meaning of “operand”.
Second, we have assumed—despite knowing little about

the lexical structure of the program—that the gutter marker
on line 5 of Figure 1 is a sufficiently precise selector of code.
Not only does line 5 contain more than one + operator, but
the plus expression that failed is actually the one spread
across two different lines.
These issues reflect two ways in which error report au-

thors can fail to effectively select program fragments:

1. failure to effectively select (e.g., with gutter markers),
because of assumptions about syntactic and lexical
structure, and

2. failure to effectively select with textual references, be-
cause of assumptions about the reader.

In principle, the latter pitfall can be addressed by forcing all
connections to be explicit. Unfortunately, this also has seri-
ous problems. If we were to follow every program reference
with the corresponding source location, for messages that
contained many textual references, this would dramatically
increase the size and detail of error messages. For instance,
the revised error report of Figure 1 would look like:

The binary plus expression at
some/directory/and/filename.arr:5:6-6:7 failed.

The value of the left side at
some/directory/and/filename.arr:5:6-5:11 was:

15

The value of the right side at
some/directory/and/filename.arr:6:6-6:7 was:

“cat”
A binary plus expression expects that either:

• that the left side is a string, or
• that both the left side and right side are numbers.

(This doesn’t even follow every reference with its location!)
We attempted such a system for Pyret but it rapidly became
untenable. This experience suggests a tension between not
providing enough information and not overwhelming the
user. Instead, we implemented a variation of a system sug-
gested by Marceau et al. [18]: in lieu of source locations,
phrases in the error report prose that refer to syntactic frag-
ments are visually associated with their referents by high-
lighting both the code and the phrase in a shared color. Fig-
ure 2 demonstrates this.
While, in principle, highlighting allows us to simultane-

ously connect every textual reference to a syntactic structure,
technical limitations may prevent this from happening in
full. Our implementation of highlighting did not support
nested highlights, so a highlight over a term would prevent
concurrent highlights in its subterms. In Figure 2, we re-
solve this by making “binary plus expression” an on-demand
highlight: when the mouse is moved over this phrase, the
other highlights in the code are hidden and the entire plus
expression is highlighted.

7 Applying the Process to Highlights

With this highlighting mechanism, highlighting design deci-
sions must be considered in two contexts. First, highlights
of program fragments may be analyzed as a distinct channel
of communication with the user. If selections of program
fragments are interpreted by the user in lieu of the error
report’s prose [18], these selections should then be analyzed
as if they were the error report prose. Second, highlighting
can be analyzed in their role as a clarifier of the informa-
tion provided in the error report prose; in the highlighting

Error Messages Are Classifiers Onward!’17, October 25–27, 2017, Vancouver, Canada

1 a = 5

2 b = 10

3 c = "cat"

4 d = "hello"

5 print(a + b +

6 c + d)

The binary plus expression failed.

The value of the left side was:
15

The value of the right side was:
“cat”

A binary plus expression expects that either:

• that the left side is a string, or
• that both the left side and right side are numbers.

Figure 2. This error report uses highlighting to connect textual references to their referents in the program source. Clicking
on any textual reference brings the relevant code into view in the editor.

mechanism we used, highlighting decisions affect both both
the program and the prose. We therefore need a method to
evaluate highlighting decisions in each of these contexts.
Fortunately, our existing evaluation process can also be ap-
plied here. In particular, the p-ast is a good representation
for reasoning about the consequences of highlighting.

7.1 Represent & Classify

As before, we represent the available information as a p-
ast, and classify its elements as relevant or irrelevant. All
programs whose execution causes a divide-by-zero error will
have at least one syntactic structure in common: a division
expression. We represent this as a p-ast; the terms classified
as relevant are denoted in bold:

...

Div

Left Right

7.2 Select

In what follows, we will assume that the compiler tags each
node of the ast with the range of corresponding characters
in the program. The edges of the ast and p-ast therefore rep-
resent both the structural and lexical ‘contains’ relationship
of nodes to their children; i.e., the subterms of a node are
within the lexical extent of that node. Consequently, when a
structure is highlighted, its subterms will also be within the
visual highlight. This consequence of highlighting is made
evident by representing a highlight of a term on the p-ast as
a box draw around that term’s entire subtree. For instance,
a highlight over the Div subtree will unavoidably envelope
both the Left and Right subtrees:

...

Div

Left Right

7.3 Analyzing Program Highlights Independently

To analyze program highlighting decisions in the context of
an “edit-here” mentality, we evaluate program highlights as
if they were the error report: by computing the precision and
recall of the program selections. In this context, precision
reflects the fraction of highlighted p-ast nodes that are rele-
vant and recall reflects the fraction of relevant p-ast nodes
that are highlighted. In contrast to our application of the
process in Section 5, selection decisions here often involve
tradeoffs: a highlight of a relevant term may sweep up ir-
relevant elements in that term’s subtree and our limitation
of no-nested-highlights constrains the number of distinct
highlights we are able to make.
For the p-ast of the divide-by-zero error, there are two

promising ways that the p-ast may be highlighted: First, we
could highlight the entire Div expression, thereby achieving
perfect recall at the expense of precision:

...

Div

Left Right

Precision =
2

2 + 1

=
2
3

Recall =
2

2 + 0

=
2
2

Alternatively, we could highlight only the Right subtree and
achieve perfect precision at the expense of recall:

...

Div

Left Right

Precision =
1

1 + 0

=
1
1

Recall =
1

1 + 1

=
1
2

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

Application

Applicant Arguments

Arg1
. . .

Argn

Function

Params

Param1
. . .

Paramm

Name Type Name Type

Type
ParamsName Return

Type Body

Figure 3. A p-ast for the application and definition sites of an Arity-Mismatch error. The relevant terms are in bold.

7.4 Analyzing Highlights as a Clarifier of Prose

In this context, we use a measure of recall to quantify how
program highlighting decisions impact the highlighting of
the prose. Here, the recall of a potential highlighting strategy
is computed over the highlights of the prose, rather than over
the highlights of the program source. For instance, Figure 3
depicts the p-ast for programs that induce an arity-mismatch
error. (In contrast to the previous examples we have con-
sidered, this p-ast consists of two distinct components—a
function definition and an application site.) A possible re-
port for this error—whose prose includes references to all
relevant syntactic elements—is given below. The references
to syntactic elements are underlined and the name of their
referent is set beneath each underline.

Evaluating a function application expression
Application

failed.

n arguments
Arg1 ...Argn

were passed to the left side
Applicant

.

The left side was a function
Function

accepting m arguments
Param1 ...Paramm

.

A function application expression
Application

expects that the left side
Applicant

evaluates to a function which accepts exactly the same
number of arguments

Param1 ...Paramm
as are passed

Arg1 ...Argn
to it.

For this error, technical limitations rule out highlighting
strategies that would initially highlight every textual refer-
ence in that message; e.g. an initial highlight of “function
application expression” would rule out initially highlighting
“left side”, “n arguments” and “passed” since Applicant and
Arg1...Argn are in the subtree of Application. While the
mechanism of on-demand highlights enables us to augment
all references to syntactic elements in the prose—though per-
haps not immediately or simultaneously—it raises a design
decision: which textual references in the report prose should
be initially connected to their referent via a highlight, and
which connections should be shown on-demand?

We evaluated these decisions using a measure of recall
we dubbed immediate actionability: the fraction of textual

references to distinct syntactic fragments that are initially
highlighted. In essence, this is the fraction of references in
the prose that a user can connect at a glance to the piece of
syntax they reference—without activating any on-demand
highlights. In this example, the prose contains five distinct
references to syntactic fragments:

1. Application
2. Arg1...Argn
3. Applicant
4. Function
5. Param1...Paramm

The denominator of immediate actionability scores for this
error report will be five. Figure 4 depicts two potential high-
lighting strategies for this aritymismatch error and compares
their immediate actionability scores.

8 Challenges

We now discuss several challenges we encountered in apply-
ing our framework to Pyret’s error reports.

8.1 The Rainbow Objection

The assignment of colors to highlights poses practical chal-
lenges. If an error report contains many references to dis-
tinct syntactic fragments, it may not be possible to choose
colors with sufficient contrast. If multiple error reports are
displayed, the user may conflate the highlights of one error
report with those of another.

In practice, we encountered no error report requiringmore
than three distinct colors: our highlighting strategy for arity-
mismatch errors (see Figure 4b). Note that although the num-
ber of highlighted syntactic elements for this error grows
linearly with respect to the number of formal and actual pa-
rameters present in the program, the number of references
to these elements in the prose of the report remains constant.
To prevent confusion between different error reports, our
system only displayed the highlights for one error report at
a time. Clicking on an non-highlighted error report hides
the existing highlights and displays the highlights for that
report.

Error Messages Are Classifiers Onward!’17, October 25–27, 2017, Vancouver, Canada

Function

Params

Param1
. . .

Paramm

Name Type Name Type

Type
ParamsName Return

Type Body

Application

Applicant Arguments

Arg1
. . .

Argn

Evaluating a function application expression failed.

3 arguments were passed to the left side.

The left side was a function accepting two arguments.

A function application expression expects that the
left side evaluates to a function which accepts exactly the
same number of arguments as are passed to it.

(a) In this highlighting strategy, only Applicant and Application
are highlighted initially. This highlighting strategy precludes ini-
tially highlighting any of the other three syntactic elements refer-
enced by this prose. Consequently, the immediate actionability of
this highlighting strategy is 2

5 .

Function

Params

Param1
. . .

Paramm

Name Type Name Type

Type
ParamsName Return

Type Body

Application

Applicant Arguments

Arg1
. . .

Argn

Evaluating a function application expression failed.

3 arguments were passed to the left side .

The left side was a function accepting two arguments .

A function application expression expects that the left side
evaluates to a function which accepts exactly the same
number of arguments as are passed to it.

(b) In this highlighting strategy, all textual references except Appli-
cant and Application are highlighted initially. This highlighting
strategy precludes initial highlights of onlyApplicant andApplica-
tion. Consequently, the immediate actionability of this highlighting
strategy is 3

5 .

Figure 4. Two potential highlighting strategies for an arity-mismatch error. From top to bottom: the highlighting plan depicted
on the p-ast of the definition site, the highlighting plan depicted on the p-ast of the application site, the consequences of
the program highlighting plan on the highlighting of the error report prose. The caption of each highlighting plan describes
the plan and quantifies its impact on the highlighting of the prose with an immediate actionability score. The colors in this
diagram reflect the initially highlighted set of phrases and program fragments. The underlined phrases indicate the references
to syntactic elements that are highlighted on-demand.

8.2 Relationship Problems

The p-ast for Arity-Mismatch depicted in Figure 3 has
two disjoint components: the function application and the
function definition. We left the relationship between these
components unspecified; the application site could feasibly
be either a descendant of the function definition (e.g., a re-
cursive function), or a collateral relative (i.e., a term that
is neither a direct ancestor or descendant of the function
definition).

If a p-ast involves multiple disjoint components, the re-
lationship between the components should be considered
when designing highlights. For instance, the highlighting
strategy presented by Figure 4a is actually invalid in our
implementation of highlighting: if the Application term
is within the subtree of the Body term, then the highlight
over the Function term precludes displaying any initial
highlights on any of the terms in the Application subtree.

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

8.3 Selection Influences Classification

We used the classification of terms as relevant or irrelevant
to directly inform the design of highlights (i.e., we tried to
highlight the relevant terms, and tried to not highlight the
irrelevant ones). Our very use of highlights, however, may
influence how we classify syntactic structures as relevant
and how we weigh the tradeoffs of highlighting strategies.
For example, Pyret reports a Shadowed-Param error if

the name of a formal parameter of a function conflicts with
a name already in scope. In the program fragment below
(assuming a is bound and visible), the name of the parameter
is clearly relevant (since we can resolve the error by changing
the name) and is therefore highlighted:
1 fun foo(a :: Number):

2 ...

3 end

Given this classification, the highlights depicted above are
both sound and complete. However, another possible res-
olution strategy involves deleting the parameter entirely.
Unfortunately, a student who applies an edit-here mentality
to the above program may delete the name but not its type
annotation—thereby inducing a syntax error. To accommo-
date this behavior, it is reasonable to conclude that the entire
parameter, as a unit, is relevant, and consider a strategy that
renders a highlight around it:

1 fun foo(a :: Number):

2 ...

3 end

Under this revised classification, the initial highlighting scheme
we considered remains sound, but is no longer complete. The
second highlighting scheme we considered is complete at the
expense of soundness (the type annotation of the parameter
remains irrelevant to this error):

. . .

Parami

Name Type

Precision =
2
3

Recall =
2
2

8.4 Optional Syntactic Structures

In that last example, a loss of precision is effected by the
presence of a Type annotation. However, type annotations
are optional in Pyret. If we omit optional structures from our
p-asts, the estimates of precision we make based on those
p-asts will be inflated. Duplicate-Param is an extreme case
of this: if omit the Type term from the above p-ast because
it is optional, we would have failed to detect any loss of
precision whatsoever. To make the most pessimal estimates
of precision and recall, optional structures must be included
in the p-ast.

8.5 Selection Bias

Although suggesting a rule for classification is outside the
scope of this paper, the classifications used in our work
roughly follow a simple rule: a term is relevant if there is
an edit strategy associated with it that could resolve the
error. However, some edit strategies fundamentally cannot
be represented on a p-ast or have their associated terms
highlighted simply because they involve adding terms.
For example, an Unbound-ID error may be resolved by

introducing a new binding to the program. The previously-
discussed Shadowed-Param error can be resolved by intro-
ducing the keyword shadow before the name of the parameter.
A term which does not exist cannot be highlighted.

8.6 Empty Syntactic Structures

We assume that, when we highlight a structure, we can visi-
bly highlight corresponding code. While this is usually true,
it can break down, e.g., when a highlighted structure con-
tains no subterms. Figure 5 depicts an instance of this issue:
note that there are no pink arguments highlighted in the
code.
These situations can be accommodated with careful ob-

servations about the lexical structure of the error-inducing
programs. For example, the error report of Figure 5 could
be improved by highlighting the () tokens if there are no
arguments, providing a target for the selection.

A reader might thus wonder why the original report high-
lighted individual arguments at all (as seen in highlighting
strategy of Figure 4b). This is done because the user (partic-
ularly a novice) may not fully grasp the language’s lexical
structure. The split highlighting helps the user see where
each argument begins and ends, resolving this and perhaps
also, subtly, improving their grasp of the syntax. Another
option is thus to use distinct colors for the number and for
the word “arguments”, using the latter to always highlight
the (), though this would result in two more colors (one for
formal, one for actual).

8.7 Implicit Structures

In addition to zero-width structures, programming languages
may contain implicit structures. For instance, Pyret requires
that method declarations include an explicit “self” parameter
as the first formal parameter (à la Python). This argument is
implicitly passed during method invocation; e.g., if a method
is defined with two arguments, the length of the argument
list at a call-site should be one. Supplying the wrong number
of arguments results in a confusing error report, as Figure 6
shows, because the green highlight refers to three arguments
but highlights only two.

9 Preliminary User Study

We applied this process to contribute an overhaul of Pyret’s
error reports. We rewrote all but a few of Pyret’s 87 distinct

Error Messages Are Classifiers Onward!’17, October 25–27, 2017, Vancouver, Canada

Figure 5. An error report for Arity-Mismatch with the tex-
tual reference to the actual parameters highlighted in pink.
The program source does not contain a corresponding high-
light because the source contains no parameters on which a
highlight can be displayed.

error report types. This framework also identified numerous
errors that were insufficiently specific. As a result we refac-
tored the existing errors, resulting in 50 new types of error
reports.
While the perspective of error-messages-are-classifiers

does not prescribe how error reports should be presented,
adhering to this methodology resulted in significant visual
changes to Pyret’s error reports. A preference towards noti-
fications with high recall (and therefore many information
elements) substantially increased the length of most error
messages. Our liberal use of highlighting strategies with high
immediate-actionability could be visually intense. Respec-
tively, we feared that our revised notifications might be too
much to read, and too much to look at (especially with the
use of multiple colors to distinguish selectors). We therefore,
needed to evaluate the new error messages actual users.

The revised notifications were previewed by teachers dur-
ing August 2016. Since they were received well, the Pyret
team decided to deploy our revised errors to the public that
month. In the fall semester that followed, Pyret was used by
several hundred students ranging from the high-school to
graduate level. During these periods, we did not receive any
criticisms relating to the revised notifications, and received
modest positive feedback from educators.

Despite this lack of negative response, we wanted to ver-
ify directly that student interactions with the revised noti-
fications were positive and effective. At the end of the Fall

Figure 6. An implicit structure causes an apparently contra-
dictory message: the message references “3 arguments”, but
the corresponding highlight selects only two arguments. A
‘self’ parameter has been passed implicitly to the method in
the application. The presence of an implicit structure creates
an apparent discrepancy between the message text and its
corresponding highlight.

2016 semester, we conducted a preliminary study of stu-
dent sentiment and their interaction with the revised reports.
Forty-eight students in an accelerated college-level intro-
ductory programming course participated in an optional lab
section for extra credit, during which we screen-captured
their progress on two programming problems, then adminis-
tered a survey to solicit feedback regarding error reports.

9.1 Programming Sessions

In the programming portion of this study, we asked students
to implement two simple functions. These problems were
selected on the basis that they could be both succinctly de-
scribed and implemented, and because we suspected that
the implementation process for these problems would be
error-prone. In this order, students were asked to:

1. “Design a function called rainfall that consumes a list
of numbers representing daily rainfall amounts as en-
tered by a user. The list may contain the number -999
indicating the end of the data of interest. Produce the
average of the non-negative values in the list up to

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

[DEL] Deletes the problematic code wholesale.
[UNR] Unrelated to the error report, and does not help.
[DIFF] Unrelated to the error report, but it correctly

addresses a different error or makes progress in
some other way.

[PART] Evidence that the student has understood the
error report (though perhaps not wholly) and
is trying to take an appropriate action (though
perhaps not well).

[FIX] Fixes the proximate error (though other cring-
ing errors might remain).

Figure 7. Rubric for edits made in response to errors.

Phase % of Errors B
Run-time 50.5 12.3

Well-Formedness 21.9 11.4
Parse 26.2 5.4

Figure 8. Distribution of errors by phase.

the first -999 (if it shows up). There may be negative
numbers other than -999 in the list.” [9, 24]

2. “Design a function called argmin that consumes a list
of numbers and produces the index of the smallest
number in the list.”

We additionally requested that students self-verify the cor-
rectness of their implementations by writing tests. Students
were permitted to use standard library routines in their im-
plementations, but were asked to not look up solutions on-
line. Participants received the same amount of extra-credit
regardless of the completeness or correctness of their im-
plementation. Technical difficulties resulted in the loss of 4
of the 96 recordings. Twelve recordings did not include any
encounters with errors.
Across the 80 recordings in which errors were encoun-

tered, 283 compilation or execution attempts resulted in an
error. We analyzed each student response to these using
the coding rubric of Marceau et al. [17] (shown in Figure 7).
Three coders applied the rubric independently, then com-
pared their results. A consensus was reached in all instances
of disagreement.
We adopted Marceau’s measure for the percent of errors

that were responded to badly according to this rubric:

B =
[unr] + [part]

[fix] + [unr] + [part]

This metric does not include [del] or [diff]; neither coding
provide a clear indication as to whether or not the user was
responding to the proximate error. We calculated B across all
error encounters, for each compilation or execution phase
errors were induced in, and for each particular type of error.
We discuss these results below.

Error Type Phase % Errors % Bad
Test-Mismatch R 20.8 18.5
Unbound-Id R 10.2 14.3
Arity-Mismatch R 8.8 0.0
Annotation R 6.7 5.3
Field-Not-Found R 6.7 27.8
Div-By-Zero R 4.6 8.3
Shadowed-Id W 4.2 0.0
Missing-Colon P 3.9 9.1
Missing-Comma P 3.9 0.0
Empty-Block W 3.6 25.0

Figure 9. Summary of coding results for the ten most-
encountered errors. The letters R, W, and P, respectively
denote the run-time, well-formedness, and parsing phases of
execution and compilation.

Figure 10. A bug causes Pyret to erroneously highlight a
structure other than the one referred to by the message for
this type of error.

Our technique of highlighting program structures could
not be applied to parse errors, since no structured represen-
tation of the program could be constructed. However, the
grammar of languages that Pyret is able to parse is more lib-
eral than the grammar of executable Pyret programs. Many
syntactic properties are verified during a well-formedness-
checking phase that operates over an AST. Errors induced
during both this phase of compilation and during program
execution were able to highlight program structures.
In all, 10.5% error reports were responded to poorly ac-

cording to our rubric. Errors induced during phases in which
structural highlighting could be applied accounted for ap-
proximately 72% of error encounters, of which 12.5% received
bad responses. Figure 8 summarizes the coding results by
compilation and execution phase.

In the process of reviewing student responses, we discov-
ered two scenarios in which Pyret’s error reports performed
poorly. The errors induced by these scenarios were among

Error Messages Are Classifiers Onward!’17, October 25–27, 2017, Vancouver, Canada

the then most commonly encountered errors, the coding
results of which are summarized in Figure 9. First, we discov-
ered that many students encountered some degree of difficul-
ties with Pyret’s module system. These mistakes (caused, for
example, by typing list instead of lists) often surfaced as
seemingly-orthogonal Unbound-ID (B = 14.3%) and Field-
Not-Found (B = 27.8%) errors. Second, we discovered that
the Empty-Block error (B = 25.0%)—induced by programs
in which a structure that expects to contain one or more
expressions contains no expressions—produced a report that
highlighted whatever structure immediately preceded the
actual problematic structure. Figure 10 depicts an instance
of this bug.

9.2 Survey Responses

Following the programming portion of the study, all partici-
pants answered the following questions in writing:

1. Do you usually read error messages? Why or why not?
2. What about the error messages do you find helpful?
3. What about the error messages do you find unhelpful

or frustrating?
4. When a message refers to your code, are you usually

able to find what it is referring to?
5. Do you find the highlights in error messages helpful?
6. Do you have any further comments?

In their answers, participants drew on most of a semester’s
experience with the Pyret ecosystem. Across all questions,
87.5% of respondents (all but three) commented positively
regarding highlighting. Of these, 72.9% of respondents com-
mented only in positive terms, while 14.6% included at least
one critical or constructive comment about highlighting.
Our concerns of verbosity and visual intensity were not sub-
stantiated by survey feedback. The use of vivid colors was
positively cited by two participants:

1. “I like how it highlights it in a particular color which
makes it rather easy to locate.”

2. “I love how it highlights the various parts of the appli-
cation expression in different colors. pleasing to look
at and helpful for understanding what went wrong.”

All participants additionally indicated that they read error
messages, and two participants directly referenced the ‘ver-
bosity’ of the messages as a helpful aspect:

1. survey: What about the error messages do you find
helpful?

student: They are generally verbose and allow my
to understand the problem.

2. survey: Do you usually read error messages? Why or
why not?

student: Yes, every time! Error messages are an
integral part of debugging and, in my case, under-
standing the development of my program. Error
messages don’t simply report a failure of a project.
In my style of coding, I often use intentional errors

as stop points, concept checks, or as a means of
redirecting my efforts when I get lost. Therefore,
the verbosity of error messages is essential for my
process.

9.3 Criticisms

The survey responses of the three students that provided
only critical or constructive feedback are representative of
the criticisms we received. We are also optimistic that each
of these frustrations can be entirely addressed through bug
fixes and minor interface adjustments:

Incorrect Highlights Student 1 indicated that highlights
were cause for outright frustration, but we believe their frus-
tration was tied to the Empty-Block highlighting bug:
survey: Do you find the highlights in error messages

helpful?
student: No I find them extremely annoying.
survey: What about the error messages do you find

unhelpful or frustrating?
student: I frequently comment out my test cases in

where blocks and forget to write nothing. The
error message when you do this is extremely
confusing and has given me several headaches
because for some reason I never remember that
this always happens.

Failure-to-Highlight Student 2 expressed ambivalence to-
wards highlighting, and cited a scenario in which the local-
izing benefits of highlights were nullified because highlights
could not be rendered for references to imported code:
survey: Do you find the highlights in error messages

helpful?
student: not really
survey: What about the error messages do you find

unhelpful or frustrating?
student: If you havemultiple files, you have to switch

between the testing file and the program file
Several other respondents also referenced this as a frustra-
tion. This temporary shortcoming of our implementation
would have been particularly visible to this group of stu-
dents, as the homework assignments asked them to maintain
separate files for their implementation and tests.

UI of Highlight References Student 3 suggested that we
remove the “pulsating” visual effect we had applied to on-
demand highlights: when an on-demand-highlighted textual
reference was moused-over, its corresponding highlight not
only appeared, but also blinked.

9.4 Limitations

Though we were unable to substantiate our concerns or
identify other systemic issues in Pyret’s revised error reports,
this study certainly has limitations:

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

• The college-age participants of this study may be less
vulnerable to verbose or overly colorful notifications
than younger students.

• The participants of this study were capable users of
Pyret, having used it extensively for a semester. The
frustrations expressed by students at the end of a se-
mester are likely different than the frustrations that
would be expressed at other points in the semester.

• It is also possible that the issues which users reported
(many of which were unrelated to highlighting, or
even error messages) caused other problems to remain
unreported.

• Testing students in a lab imposes constraints (time,
motivation, interest, etc.) that may be artificial relative
to other environments.

Nevertheless, this study suggests that it is reasonable to
consider verbose and colorful messages, subject to further
investigation.

10 Related Work

In taking the position that error reports are classifiers of
program information, we gained insight on how reports can
be assessed, but not on how the designer should decide which
information is relevant, nor on what specific mechanism
should be used to present that information, nor whether
any of these questions are essential to the experience of
programming. These questions are open, and some are even
controversial. Especially for novices, although it is widely
accepted that encounters with errors are formative [7, 15,
18, 19], there is substantial disagreement about the role they
should play in learning to program.

Suggesting Fixes There is no consensus on whether error
messages should suggest resolution strategies, with literature
arguing both for [10, 11, 26] and against [18, 22]. For instance,
the design of GREATERP [22], a LISP tutor, was guided by
a belief in the pedagogical importance of having students
independently formulate error resolutions:

The tutor is designed to provide only as much
guidance as necessary while encouraging the
student to generate as much of the solution as
possible. Thus, the tutor generally tries to pro-
vide hints rather than actual solutions.

The designers of BlueFix [26] took the opposite position, also
citing pedagogical implications:

BlueFix places an emphasis on teaching pro-
gramming students how to resolve errors by
example, and therefore suggests methods to re-
solve syntax errors using a database of crowd-
sourced error fixes.

Once a position on such issues of relevance is taken, our
classifier model can be applied to guide the design and as-
sessment of error reports. However, the utility of applying

this model at authorship-time is a function of the degree to
which the feedback provided by error reports is predictable.
Environments where correction suggestions are generated
via static analysis (e.g., [2]) are highly predictable, and there-
fore amenable to authorship-time assessment. If suggestions
are provided dynamically (e.g., via crowd-sourcing [11, 26]),
an authorship-time assessment may not be as informative.
The typical real-world performance of these dynamic sys-
tems can instead be evaluated by applying precision and
recall to the actual suggestions provided for concrete, buggy
programs [26].

Presentation Perspectives A classifier model of error re-
ports suggests only how error reports should be assessed,
not how the relevant information ought to be presented. For
this, authors may draw from both general interface design
guidelines (e.g., cognitive dimensions of notation) and rec-
ommendations tailored to error reports (e.g., [1, 3, 13, 23, 25]).
Barik et al. [3]’s “interaction-first” approach to structuring
error reports has designers taxonomize both errors and their
associated resolution tasks according to similarities. For in-
stance, the errors induced by a duplicate cases patterns in
Haskell and duplicate method names in Java might both be
taxonomized as a ‘Clash’, and the applicable editing strate-
gies for these errors may be drawn from a resolution tax-
onomy (e.g., Remove(X), Replace(X,Y)). These taxonomies
aid with the design of highly consistent interfaces for error
reporting and interactive resolution.
Authors may implement their design principles with a

growing vocabulary of visual notations. The highlighting
system used in this work is a variation of one proposed by
Marceau et al. [18] and subsequently employed byWeScheme
[27]. Our use of highlighting differs slightly from these sys-
tems in not supporting nested highlights; we used on-demand
highlights instead. Marceau’s highlighting system innovates
on the previous uses of highlighting for program selection
(e.g., [8]) with the key insight that it can additionally be used
to select error message prose, and that these two uses of
highlights can be associated with a common color.
Selection notations can be enriched with additional se-

mantic cues particular to the context in which they are used.
MrSpidey, a static debugger for Scheme, uses green and red
highlights to annotate operations whose safety can or cannot,
respectively, be statically proved [8]. Our use of highlight-
ing did not use colors in this manner. In fact, we selected
the colors of highlights randomly to dissuade users from
attributing meaning to highlights on the basis of their color.
In contrast, recent work by Barik [1] presents a semantics-
laden program annotation system that performs the dual
role of program selector and error explanation. Using such
semantically-rich notations may reduce the subjectivity of
determining whether a presentation soundly and completely
conveys relevant information.

Error Messages Are Classifiers Onward!’17, October 25–27, 2017, Vancouver, Canada

Eliminate Error Reports? If encounters with error reports
are daunting to novices, we could try to limit encounters
altogether by designing languages and environments which
are error-preventing and error-tolerant [14]. Environments
such as Scratch [16] and Tern [12] provide programming
interfaces that preclude the construction of syntactically in-
valid programs. In an attempt to further reduce error reports,
Scratch also extends this principle to the run-time semantics,
and “attempts to do something sensible even when presented
with out-of-range inputs” [16].

11 Conclusion

This paper proposes that we shift our perspective on error re-
ports. We complement the broad literature on error message
text with a new perspective: that error reports are program
classifiers, and as such should be evaluated using the metrics
applied to classification. Adopting this perspective both gives
us a diagnostic process that we can apply to error reports
even before a language has been implemented, and gives us
a numeric basis we can include when we compare different
error reporting strategies. (We note that our perspective is
not limited to error reporting; the same principle applies to
any form of feedback about program source.)
We develop this perspective through a simple example.

We then show its application to the error feedback in the
Pyret programming language. Doing this resulted in a sub-
stantial revision to Pyret’s reporting, but with the potential
for negative consequences. We report on a user study that
shows that the messages were effective; we observed positive
effects on the student users while finding almost no negative
impacts.

Acknowledgments

This work is partially supported by the US National Science
Foundation. We thank the anonymous reviewers for their
comments, which helped improve this paper. We are grateful
to our shepherd, Karim Ali, for responding to our queries
and helping us work through the reviews in the process of
revising the paper. We are especially grateful to Ben Lerner
and Joe Politz of the Pyret team for their help with imple-
menting the new error message presentation, to Peter Hahn
and Raghu Nimmagadda for their help reviewing screen cap-
tures, and to the students who participated in the studies
and gave us valuable feedback.

References

[1] Titus Barik. 2014. Improving error notification comprehension through
visual overlays in IDEs. In 2014 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 177–178. DOI:http://dx.doi.
org/10.1109/VLHCC.2014.6883043

[2] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill.
2016. From Quick Fixes to Slow Fixes: Reimagining Static Analysis
Resolutions to Enable Design Space Exploration. In 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE. DOI:http://dx.doi.org/10.1109/icsme.2016.63

[3] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-
Hill. 2014. Compiler Error Notifications Revisited: An Interaction-first
Approach for Helping Developers More Effectively Comprehend and
Resolve Error Notifications. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion
2014). ACM, New York, NY, USA, 536–539. DOI:http://dx.doi.org/10.
1145/2591062.2591124

[4] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G.
Green, Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes,
Chrystopher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Al-
lan Wong, and Richard M. Young. 2001. Cognitive Dimensions of
Notations: Design Tools for Cognitive Technology. In Proceedings
of the 4th International Conference on Cognitive Technology: Instru-
ments of Mind (CT ’01). Springer-Verlag, London, UK, UK, 325–341.
http://dl.acm.org/citation.cfm?id=647492.727492

[5] John Brooke. 1996. SUS-A quick and dirty usability scale. In Us-
ability Evaluation in Industry, Patrick W. Jordan, Thomas, Ian Lyall
McClelland, and Bernard Weerdmeester (Eds.). CRC Press, Chapter 21,
189–194.

[6] Pyret Developers. 2016. Pyret Programming Language. (2016).
http://www.pyret.org/.

[7] Benedict du Boulay and Ian Matthew. 1984. Fatal Error in Pass Zero:
How Not to Confuse Novices. In Proc. Of the 2nd European Conference
on Readings on Cognitive Ergonomics - Mind and Computers. Springer-
Verlag New York, Inc., New York, NY, USA, 132–141. http://dl.acm.
org/citation.cfm?id=2815.2825

[8] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Kr-
ishnamurthi, and Matthias Felleisen. 1997. DrScheme: A pedagogic pro-
gramming environment for scheme. Springer Berlin Heidelberg, Berlin,
Heidelberg, 369–388. DOI:http://dx.doi.org/10.1007/BFb0033856

[9] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of
the Tenth Annual Conference on International Computing Education
Research (ICER ’14). ACM, New York, NY, USA, 35–42. DOI:http://dx.
doi.org/10.1145/2632320.2632346

[10] Thomas Flowers, Curtis A. Carver, and James W. Jackson. 2004. Em-
powering students and building confidence in novice programmers
through Gauntlet. In Frontiers in Education. T3H/10–T3H/13. DOI:
http://dx.doi.org/10.1109/FIE.2004.1408551

[11] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klem-
mer. 2010. What Would Other Programmers Do: Suggesting Solutions
to Error Messages. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New York, NY, USA,
1019–1028. DOI:http://dx.doi.org/10.1145/1753326.1753478

[12] Michael S. Horn and Robert J. K. Jacob. 2007. Tangible Programming
in the Classroom with Tern. In CHI ’07 Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’07). ACM, New York, NY, USA,
1965–1970. DOI:http://dx.doi.org/10.1145/1240866.1240933

[13] James J. Horning. 1976. What the Compiler Should Tell the User. In
Compiler Construction, An Advanced Course, 2Nd Ed. Springer-Verlag,
London, UK, UK, 525–548. http://dl.acm.org/citation.cfm?id=647431.
723720

[14] Andrew J. Ko. 2009. Attitudes and self-efficacy in young adults’
computing autobiographies. In 2009 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). 67–74. DOI:http:
//dx.doi.org/10.1109/VLHCC.2009.5295297

[15] Michael J. Lee and Andrew J. Ko. 2011. Personifying Programming Tool
Feedback Improves Novice Programmers’ Learning. In Proceedings of
the Seventh International Workshop on Computing Education Research
(ICER ’11). ACM, New York, NY, USA, 109–116. DOI:http://dx.doi.org/
10.1145/2016911.2016934

[16] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The Scratch Programming Language and En-
vironment. Trans. Comput. Educ. 10, 4, Article 16 (Nov. 2010), 15 pages.
DOI:http://dx.doi.org/10.1145/1868358.1868363

http://dx.doi.org/10.1109/VLHCC.2014.6883043
http://dx.doi.org/10.1109/VLHCC.2014.6883043
http://dx.doi.org/10.1109/icsme.2016.63
http://dx.doi.org/10.1145/2591062.2591124
http://dx.doi.org/10.1145/2591062.2591124
http://dl.acm.org/citation.cfm?id=647492.727492
http://www.pyret.org/
http://dl.acm.org/citation.cfm?id=2815.2825
http://dl.acm.org/citation.cfm?id=2815.2825
http://dx.doi.org/10.1007/BFb0033856
http://dx.doi.org/10.1145/2632320.2632346
http://dx.doi.org/10.1145/2632320.2632346
http://dx.doi.org/10.1109/FIE.2004.1408551
http://dx.doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1145/1240866.1240933
http://dl.acm.org/citation.cfm?id=647431.723720
http://dl.acm.org/citation.cfm?id=647431.723720
http://dx.doi.org/10.1109/VLHCC.2009.5295297
http://dx.doi.org/10.1109/VLHCC.2009.5295297
http://dx.doi.org/10.1145/2016911.2016934
http://dx.doi.org/10.1145/2016911.2016934
http://dx.doi.org/10.1145/1868358.1868363

Onward!’17, October 25–27, 2017, Vancouver, Canada John Wrenn and Shriram Krishnamurthi

[17] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011.
Measuring the Effectiveness of Error Messages Designed for Novice
Programmers. In Special Interest Group on Computer Science Education.
ACM, New York, NY, USA, 499–504. DOI:http://dx.doi.org/10.1145/
1953163.1953308

[18] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011.
Mind Your Language: On Novices’ Interactions with Error Messages. In
ACM International Symposium On New Ideas, New Paradigms, and Re-
flections on Programming and Software (Onward!) (Onward! 2011). ACM,
New York, NY, USA, 3–18. DOI:http://dx.doi.org/10.1145/2048237.
2048241

[19] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer.
2008. Compiler Error Messages: What Can Help Novices?. In Proceed-
ings of SIGCSE (SIGCSE ’08). ACM, New York, NY, USA, 168–172. DOI:
http://dx.doi.org/10.1145/1352135.1352192

[20] S. Joon Park, Craig M. MacDonald, and Michael Khoo. 2012. Do You
Care if a Computer Says Sorry?: User Experience Design Through
Affective Messages. In Proceedings of the Designing Interactive Systems
Conference (DIS ’12). ACM, New York, NY, USA, 731–740. DOI:http:
//dx.doi.org/10.1145/2317956.2318067

[21] Peter G. Polson, Clayton Lewis, John Rieman, and Cathleen Wharton.
1992. CognitiveWalkthroughs: AMethod for Theory-based Evaluation
of User Interfaces. Int. J. Man-Mach. Stud. 36, 5 (May 1992), 741–773.
DOI:http://dx.doi.org/10.1016/0020-7373(92)90039-N

[22] Brian J. Reiser, John R. Anderson, and Robert G. Farrell. 1985. Dynamic
Student Modelling in an Intelligent Tutor for LISP Programming. In

Proceedings of the 9th International Joint Conference on Artificial Intel-
ligence - Volume 1 (IJCAI’85). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 8–14. http://dl.acm.org/citation.cfm?id=1625135.
1625137

[23] Ben Shneiderman. 1982. Designing Computer System Messages. Com-
mun. ACM 25 (Sept. 1982), 610–611. DOI:http://dx.doi.org/10.1145/
358628.358639

[24] E. Soloway. 1986. Learning to Program = Learning to Construct Mech-
anisms and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858.
DOI:http://dx.doi.org/10.1145/6592.6594

[25] V. Javier Traver. 2010. On Compiler Error Messages: What They Say
and What They Mean. Adv. in Hum.-Comp. Int. 2010 (Jan. 2010), 3:1–
3:26. DOI:http://dx.doi.org/10.1155/2010/602570

[26] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin.
2012. BlueFix: Using Crowd-Sourced Feedback to Support Program-
ming Students in Error Diagnosis and Repair. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 228–239. DOI:http://dx.doi.org/10.1007/
978-3-642-33642-3_25

[27] Danny Yoo, Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi
Fisler. 2011. WeScheme: The Browser is Your Programming Environ-
ment. In Proceedings of the 16th Annual Joint Conference on Innova-
tion and Technology in Computer Science Education (ITiCSE ’11). ACM,
New York, NY, USA, 163–167. DOI:http://dx.doi.org/10.1145/1999747.
1999795

http://dx.doi.org/10.1145/1953163.1953308
http://dx.doi.org/10.1145/1953163.1953308
http://dx.doi.org/10.1145/2048237.2048241
http://dx.doi.org/10.1145/2048237.2048241
http://dx.doi.org/10.1145/1352135.1352192
http://dx.doi.org/10.1145/2317956.2318067
http://dx.doi.org/10.1145/2317956.2318067
http://dx.doi.org/10.1016/0020-7373(92)90039-N
http://dl.acm.org/citation.cfm?id=1625135.1625137
http://dl.acm.org/citation.cfm?id=1625135.1625137
http://dx.doi.org/10.1145/358628.358639
http://dx.doi.org/10.1145/358628.358639
http://dx.doi.org/10.1145/6592.6594
http://dx.doi.org/10.1155/2010/602570
http://dx.doi.org/10.1007/978-3-642-33642-3_25
http://dx.doi.org/10.1007/978-3-642-33642-3_25
http://dx.doi.org/10.1145/1999747.1999795
http://dx.doi.org/10.1145/1999747.1999795

	Abstract
	1 Introduction
	2 Shifting From Text to Classification
	3 A Model of Error Information
	4 An Error Assessment Process
	5 A Simple Application of the Process
	6 Location Locution
	7 Applying the Process to Highlights
	7.1 Represent & Classify
	7.2 Select
	7.3 Analyzing Program Highlights Independently
	7.4 Analyzing Highlights as a Clarifier of Prose

	8 Challenges
	8.1 The Rainbow Objection
	8.2 Relationship Problems
	8.3 Selection Influences Classification
	8.4 Optional Syntactic Structures
	8.5 Selection Bias
	8.6 Empty Syntactic Structures
	8.7 Implicit Structures

	9 Preliminary User Study
	9.1 Programming Sessions
	9.2 Survey Responses
	9.3 Criticisms
	9.4 Limitations

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

